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Abstract— We aim to show that Bipartite Matching for grid
graphs is in AC0. Recent works have shown that Bipartite
Matching for grid layered planar graphs is in ACC0. We aim
to extend their work. We first describe the reduction of Bipartite
Matching in grid layered planar graph to a word problem over
monoids. Then we attempt to show the monoids obtained by
reduction will always be aperiodic. Proving monoid obtained by
reduction to be aperiodic reduces to a graph theoretic problem
by extending the techniques used by Hansen et al. [2]. We will
give proofs for special cases of this graph theoretic problem.
Later we will look at other approaches and attempts for a
general solution of this problem.

I. MOTIVATION

In a recent work, Hansen et al. [2] have shown that
Bipartite matching for grid layered planar graphs is in
ACC0. They reduce the Bipartite Matching for Grid Layered
Planar Graphs to word problem over monoid. For solvable
monoids, word problem is in ACC0 [1]. So, Hansen et al.
[2] shows that reduced monoids will always be solvable. For
aperiodic monoids the problem is in AC0 [1]. We attempt to
show that reduced monoids will always be aperiodic for grid
graphs. This will put bipartite matching for grid graphs in
AC0. Proving reduced monoids are always aperiodic reduces
to a graph theoretic problem. This technique for reduction
was introduced in Hansen et al. [2] to show the monoids are
solvable. This same method can be extended to formulate a
sufficient condition for aperiodic monoids. We first look at
the reduction given by Hansel et al.[2]

II. DEFINITIONS

A. Grid Graphs

Throughout this report, by grid graph, we mean a planar
grid graph. We consider a grid ∧ = {1, . . . , l} × {1, . . . , w}
of width w and length l. A grid graph G = (V,E) of width
w and length l is a graph where V ⊆ ∧ and all edges are of
Euclidean length 1[2].

B. Grid Layered Planar Graph

A Grid Layered Planar Graph G = (V,E) of width w
and length l is a graph embedded in the plane with no edge-
crossings, with V ⊆ ∧ and if two vertices (a, b) and (c, d)
are connected by an edge, then |a− c| ≤ 1[2].

C. Monoids

A monoid,M, is a set with an associative binary operation
and a two sided identity.

D. Word Problem over Monoids

Given Xi ∈ M for i ∈ {1, . . . , n}, find product of all
Xi’s.

E. Solvable Monoids

A monoid, M, which contains only solvable groups
is called solvable. Word problem for such monoids is in
ACC0.[1]

F. Aperiodic Monoids

A monoid,M, which contains only trivial groups is called
solvable. Word problem for such monoids is in AC0.[1]

III. REDUCTION TO MONOID WORD PROBLEM

Hansen et al [2] showed that Bipartite Matching for Grid
layered planar graphs can be reduced to Monoid Word
problem. We present the monoid from their reduction. We
define for a grid layered planar graph G with w rows,

Now we define monoid as,

M = {GM : G is an odd length grid layered planar graph}∪{1}∪{0}

We define binary operation for monoid as follows:-
(X1, Y1, R)(X2, Y2, S) = (X1, Y2, R ◦ S) for Y1 = X2.
Otherwise, (X1, Y1, R)(X2, Y2, S) = 0.
1 is identity and x0 = 0x = 0.
To show the Bipartite matching is in ACC0 for grid layered
planar graphs Hansel et al [2] showed that M is a solvable
monoid. We follow there technique to obtain a sufficient
condition for M to be aperiodic monoid.
Consider a group G ⊂ M. As G is a group,
if (X1, Y1, R) ∈ G and (X2, Y2, S) ∈ G then
X1 = X2 = Y1 = Y2 as 0 /∈ G. So we can represent
(X,Y,R) by R. Suppose G is not trivial then there exists a
R ∈ G of order o > 1. Let E be identity in G.

Theorem 1: If E ⊆ Ro−1, then o = 1.
Proof:

E ⊆ Ro−1 =⇒ ER ⊆ Ro =⇒ R ⊆ E =⇒ Ro−1 ⊆ E

Therefore E = Ro−1 =⇒ o = 1.
Suppose R comes from a grid layered planar graph with
w rows. Let k = 2w and (Y0, Yk+1) ∈ E be any element
of E. As Ek+1 = E, there exists Y1, Y2, . . . , Yk such that
(Yi, Yi+1) ∈ E for i = 0, 1, . . . , k. Thus there exists Yi = X1

such that (X1, X1) ∈ E, (Y0, X1) ∈ E and (X1, Yk+1) ∈ E.
We will show that (X1, X1) ∈ Ro−1. As Ro−1 = ERo−1E,
this gives (Y0, Yk+1) ∈ Ro−1 which implies E ⊆ Ro−1.



(X1, X1) ∈ E and Ro = E. Thus there exists X2, X3 . . . Xo

such that (Xi, Xi+1) ∈ R for all i and (Xo, X1) ∈ R.
Consider a graph G defining R Let Mi be matching on
G for (Xi, Xi+1) for i < o and Mo for (Xo, X1). Let
graph Si = Mi ∪M(i+1) for i < o and So = Mo ∪M1.
Let Sn = S1 ⊕ S2 ⊕ . . . So ⊕ S1 . . . n times. We call
each Si a block. Let M be concatenation of matchings
M1M2 . . .MoM1M2 . . . and N be concatenation of match-
ings M2M3 . . .MoM1M2 . . .. We can clearly see that Sn is
union of these two matchings restricted to first n block. Note
that both M and N are valid matchings in first n blocks for
Sn. Suppose n = mo and Sn does not have a path from
leftmost layer to rightmost layer. Let VR be set of vertices
reachable by rightmost layer. There is no edge from VR to
VR. Use matching edges from M for VR and matching edges
from N for VR. Thus, we get (X1, X2) ∈ Rn = E on
this matching. This gives (X1, X1) ∈ Ro−1 = ERo−1 as
(X1, X2) ∈ E and (X2, X3), (X3, X4), . . . , (Xo, X1) ∈ R.
Thus, Ro−1 ⊆ E. Therefore, we need to prove that for some
n = mo, Sn does not have a path from leftmost layer to
rightmost layer. We aim to show a slightly stronger result
that for all n > n0 and matching M = M1M2 . . . and
N = M2M3 . . ., Sn does not have a path from rightmost
layer to leftmost layer.

IV. NOTATIONS

Consider an infinite grid graph, G, with n number rows
and infinitely many columns. We divide the graph G into
G1, G2, G3,. . . such that Gi have n rows and l columns (l
is odd) and

G = G1 ⊕G2 ⊕ . . .

where ⊕ is graph concatenation operator. Let Mi be a perfect
matching on Gi for i > 1 and for M1 be a perfect matching
on G1 for all vertex except first vertices of first column.
We call edges of Mi in Gi matching edges. Also project
back edges in Mi to Gi−1 for i > 1. We call these edges
as projected edges. Let G̃i be graph Gi with matching and
projected edges. Also

G̃ = G̃1 ⊕ G̃2 ⊕ . . .

. We need to show that G̃ cannot have infinite length path
for all n, for all odd l, and, for all Mi‘s. Proving this will
put the Bipartite Matching for grid graph in AC0.

V. IMPORTANT PROPERTIES AND DEFINITIONS

A. Degree of vertices in G̃

Any vertex in G̃ can have atmost two edges(one matching
edge and one projected edge). Thus degree of any vertex
is atmost 2. Therefore we can have closed loops, path
segments and infinite paths only. Also no two matching edge
be adjacent. Thus only projected edge can be adjacent to
matching edge and vice versa.

B. Projected Path

For any path P = v0, v1, . . . , vk, we define its correspond-
ing Projected path, P̂ as follows. For each edge (vi, vi+1)
if it is a projected edge we add its corresponding matching
edge (wi, wi+1) in P̂ and if it is a matching edge in G̃j ,
we forward project it to G̃j+1, and add this new imaginary
edge to P̂ .
Example:-

Solid edges form path, P and dotted edges forms correspond-
ing projected path, P̂ . Red and green colored edges show
matching edges and projection edges in path P respectively.
Red and blue colored edges show matching edges and
forward projected edges in projected path, P̂ , respectively.

C. Directionality of Matching Edges and Corresponding
projected Edge

A matching edge and its corresponding projected edge
have opposite directionality.



D. Monotonicity of Path

We can view grid graph as a cartesian plane labeling
each vertex as (x, y). For a vertex v, we represent it’s
x-coordinate by x(v) and y-coordinate by y(v). We say
a path, P = v0, v1, . . . vk, is horizontally monotonic if
x(v0), x(v1), . . . x(vk) is monotonically(not strictly) increas-
ing or decreasing sequence. For simplicity we will call a
horizontally monotone path as H-monotone. We say path,
P = v0, v1, . . . vk, is piecewise vertically monotone if path
continuously goes down to bottom row and then continuously
up to top row and so on. For simplicity we will call such a
path as V -monotone.

E. Closed Regions

A region is defined as set of vertices. A set of vertices
which have to be matched among themselves is called closed
region. Closed regions might be very helpful in solving the
problem. For ex. existence of closed region with odd number
of points will imply non-existence of proper matching for
that region and thus for G. We will use this in proofs for
special cases.

VI. INDUCTIVE SOLUTION APPROACH

A. Proof for n = 2 and 3

Our initial approach to solution involved trying induction
on n or l. We identified that a simple proof exists for
n = 2. Taking that as base case we tried to give an
inductive argument for larger n. This approach however was
unsuccessful.
We will show non-existence of vertical edges in infinite
path. This will prove the claim. Suppose we have a verti-
cal matching edge in infinite path then we will have two
projected horizontal edges just before and after the vertical
matching edge. Let us look at matching edge corresponding
to these edges. We can clearly see that by directionality
these matching edges cannot let infinite path to cross them.
Thus we cannot have a vertical matching edge. If we have a
vertical projected edges, then we must have its corresponding
vertical matching edge in infinite path as well. Thus we
cannot have a vertical projected edge. This proves that we
cannot have a vertical edge in infinite path. This shows that
infinite path cannot exists for n = 2. We proved for n = 3
by a detailed case-by-case analysis. We also used computer
simulation to further verify for n = 3.
Extending the proof similarly for n = 4 seemed non-trivial.

VII. RESULTS FOR MONOTONIC PATHS

A. Proof for non-existence of H-monotone and V -monotone
infinite paths in G̃

Once inductive approaches seemed non-trivial, we started
to put restriction on infinite paths. First we showed the non-
existence of H-monotone and V -monotone infinite paths in
G̃. We then started to reduce monotonicity constraints.
Let us consider a segment S of an H and V monotone path
going from the top row to the bottom row. This segment leads

to the formation of a closed region C. The left boundary of C
is formed by the matching edges of S and the right boundary
of C is formed by the matching edges which generate the
projected edges of S. We show that the number of vertices
in C is odd.
The segment S enters and exists the ith row exactly once
by means of vertical edges for i ranging from 2 to n − 1.
Let C(i) denote the number of vertices in C present in the
ith row. Based on the nature of these vertical edges, we can
form 4 cases.
Case 1: Enters by a matching edge and exits by a matching
edge - C(i) = 0 mod 2
Case 2: Enters by a projected edge and exits by a projected
edge - C(i) = 0 mod 2
Case 3: Enters by a projected edge and exits by a matching
edge - C(i) = 1 mod 2
Case 4: Enters by a matching edge and exits by a projected
edge - C(i) = 1 mod 2
Now let us consider the first row. It can be shown that if S
leaves the first row with a matching edge, then C(1) is odd,
else C(1) is even.
Combining the results of the 4 cases with the above, we get

∑n−1
i=1 C(i) =


0 mod 2, S enters the last row with

a matching edge
1 mod 2, otherwise

However, the last row experiences a parity flip. It can be
seen from the figure that C(n) is odd if S enters last row
with matching edge and even if it enters via a projected edge.
This happens because last point in segment S is unmatched
by path unlike other points on segment
Hence for all the cases

∑n
i=1 C(i) = 1 mod 2.

.

B. Removing horizontal monotonicity of path from previous
proof

We present a stronger result by eliminating the need for
H-monotone path.
The proof idea is essentially same as the previous case. The
closed region C and the segment S are defined exactly same
as above. Removing H-monotonicity still ensures that the
segment S will enter and exit the ith row exactly once by
means of vertical edges. In between these vertical edges,
S can go strictly right or strictly left. The case by case
analysis and the derivation from A can be extended to only
V-monotone paths too.

C. A more stronger result

We removed the need for V -monotonicity as well by
replacing with a weaker constraint. We present proof for non-
existence of infinite path which goes from top to bottom row
in G̃.
We define closed regions as follows. For ith row we define
C(i) to points in closed regions. Suppose we draw a ray from
first column to infinity in ith row. If ray falls at a point,p,
after hitting odd number of vertical edges then p ∈ C(i)



otherwise p /∈ C(i). Union of C(i) for all i makes closed
region C.

1) C is a closed region: To show that C is a closed region
note that any path P , corresponding projected path P̂ , top
row and bottom row together make polygon(s). A point x lies
in polygon iff horizontal line passing through x hits edges of
polygon odd number of times. Thus points in C are enclosed
by matching edges, top row and bottom row. Therefore C is
a closed region.

2) C contains odd number of points:

Notice that 1 and 1′ are identical. Thus if we count 1′ we
will get same result. Thus counting C(i) is same as counting
number of points from rightmost vertical edge of path P in
ith row to corresponding edge in Projected Path P̂ . Thus
for all i, C(i) contains even number of points except last
for last row. Last row once again suffers a parity change
and end point of path P in bottom row will be unmatched
if we enter with a projected edge. If we enter with matching
edge note that region is not closed so we extend path P
to include a horizontal projected edge which then makes
region closed but introduce and unmatched point in last row.
Thus C must contain odd number of points. This concludes
the proof.

VIII. FUTURE WORKS

We need to generalize our proof our any grid graph as
our proof works for complete grid graphs only. A weaker
problem to look at might be to show that bipartite matching
is in AC0[m] for some m. For this we need to show that
every group G ⊂ M, have order mk for some k. A more
obvious directions is to extend proof for any path in complete
grid graphs. For this we may look at other closed regions.
This also raises a problem of what other type of closed
regions(other than odd number of points) do not have perfect
matching. If this keeps on failing, we should try to show that
problem is AC0-Hard.

IX. CONCLUSION

Although problem seemed quite difficult(failure of induc-
tive proofs), we have have managed to solve some specific
cases and we need some meaningful extension of results. Our
works have increased understanding of problem and raised

important questions like what structure of closed regions
prevent matching.
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